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1. Introduction

Fig. 1(a) describes a generic clearance type stiffness non-linearity f dð Þ: Only a symmetric
function with two stages is considered though one could easily generalize the concepts of this
article. Mathematically, f dð Þ can be described over three piecewise linear regimes as follows where
0pap1; and can be written as below using the absolute function gðd8bÞ ¼ d8bj j:

f ðdÞ ¼

d� ð1� aÞb; bod;

ad; �bpdpb;

dþ ð1� aÞb; do� b;

8><
>:

¼ dþ ð1� aÞ
gðd� bÞ � gðdþ bÞ

2
: ð1Þ

Further, one can rewrite the signum or sgn function in terms of derivative of the absolute function
gðd8bÞ as below where superscript 0 implies a derivative with respect to d:

sgnðd8bÞ ¼ djd8bj=dd ¼ g0ðd8bÞ: ð2Þ

The reason for investigating the g0ðd8bÞ term separately is that the sgn function is used when the
frictional hysteresis is described along with the non-linear stiffness function. Accordingly, modify
f ðdÞ to define f ðd; ’dÞ that will include velocity related frictional hysteresis terms fHðd; ’dÞ: Here, the
relative velocity is defined as ’d ¼ dd=dt: As shown in Fig. 1(b), when ’d > 0; the fHðd; ’dÞ term
follows the upper locus drawn by a ‘‘dash-dot’’ line, and an increase in d results in an abrupt jump
in force at b; from the hysteresis value H1 to H2: When ’do0; the fHðd; ’dÞ term follows the lower
locus, the ‘‘dashed’’ line. Now, the jump takes place at �b from H1 to H2: The fHðd; ’dÞ function
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depends only on the sign of ’d and the d7b value. Mathematically, it is written as follows:

fHðd; ’dÞ ¼ sgnð’dÞ
H2

2
þ

ðH2 � H1Þ
4

½sgnðdþ bÞð1� sgnð’dÞÞ þ sgnðd� bÞð1þ sgnð’dÞÞ	

¼ g0ð’dÞ
H2

2
þ
ðH2 � H1Þ

4
½g0ðdþ bÞð1� g0ð’dÞÞ þ g0ðd� bÞð1þ g0ð’dÞÞ	: ð3Þ

Note that f ðdÞ or f ðd; ’dÞ describes a non-analytical, non-differential and discontinuous function.
This would obviously pose problems in numerical simulations, especially around the stiffness
transitions at 7b [1–7]. In this communication, we present several smoothening functions and
demonstrate their influence on the non-linear frequency response characteristics of a single-
degree-of-freedom system. Responses at the primary as well as super-harmonics are considered
given sinusoidal excitation.

2. Smoothening functions

The absolute and the sgn functions of Eqs. (1)–(3) can be smoothened using the trigonometric
or polynomial type functions and a regularizing factor s that can be adjusted to suit the needs of
non-linear analysis. Technically, we are approximating the absolute (abs) function since the
absðdÞ ¼ dðdðabsðdÞÞ=ddÞ within the ð�b; bÞ regime. Even the a ¼ 0 value in Eq. (1) produces a
piecewise continuous curve, but their derivatives are discontinuous (C0 continuous). The sgn
function only affects the derivatives of choice but is still bounded even though it is discontinuous.
When replacing sgn with any smoothening function, one must consider its derivatives when
describing the dynamic motion of an oscillator with dry friction. This is because the dry friction is
discontinuous and the derivative is not bounded unless we describe it using tanh or arctan.
One can approximate Eqs. (2) and (3) with alternate smoothening functions where KgiðxÞ

represents an approximation or estimation of the absolute function where x ¼ d8b: Further,
derivatives of Kgi with respect to d are described where superscripts 0 and 00 imply first and second
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Fig. 1. Non-linear functions with discontinuities. (a) Clearance non-linear stiffness function f ðdÞ with slopes of a and 1

over the piecewise linear regimes; (b) frictional hysteresis function fH ðd; ’dÞ with dual values H1 and H2:
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derivatives, respectively. Some of the more reliable smoothening functions are classified as
follows.
1. Hyperbolic-tangent type

Kg1ðxÞ ¼ x tanhðsxÞ; ð4aÞ

Kg0
1ðxÞ ¼ tanhðsxÞ þ xð1� tanhðsxÞ2Þs; ð4bÞ

Kg001ðxÞ ¼ 2ð1� tanhðsxÞ2Þsþ xð2 tanhðsxÞð1� tanhðsxÞ2Þs2Þ: ð4cÞ

2. Arc-tangent type

Kg2ðxÞ ¼ x
2

p
arctanðsxÞ; ð5aÞ

Kg02ðxÞ ¼
2

p
arctanðsxÞ þ x

2s

pð1þ ðsxÞ2Þ
; ð5bÞ

Kg00
2ðxÞ ¼

4s

pð1þ ðsxÞ2Þ
þ 4x

s3x

pð1þ ðsxÞ2Þ2
: ð5cÞ

3. Hyperbolic-cosine type

Kg3ðxÞ ¼
1

s
lnð2 coshðsxÞÞ; ð6aÞ

Kg0
3ðxÞ ¼ tanhðsxÞ; ð6bÞ

Kg00
3ðxÞ ¼ s� tanhðsxÞ2s: ð6cÞ

4. Quintic spline type (here, y 
 x=e and where e ¼ b=s)

Kg4ðxÞ ¼

e
8
ð3þ 6y2 � 1y4Þ; yj jp1;

xj j; yj j > 1:

8<
: ð7aÞ

Kg04ðxÞ ¼
1
8
ð12y � 4y3Þ; yj jp1;

sgnðxÞ; yj j > 1:

(
ð7bÞ

Kg00
4ðxÞ ¼

1

8e
ð12� 12y2Þ; yj jp1;

0; yj j > 1:

8<
: ð7cÞ

Yet for both numerical and semi-analytical simulation schemes, the effect of s is not fully
understood and its lower limit has not yet been tested [4–7]. A smaller s value is desirable as it will

T.C. Kim et al. / Journal of Sound and Vibration 263 (2003) 665–678 667



decrease the calculation time and increase convergence of simulation codes. The larger the s
value, the closer is the approximated Kgi curve to the original non-linear function. A very high
value of s (such as 106) seems to work well in some numerical simulations [3–6], but this can cause
numerical instability since it has enormous influence on the response, especially when a is near
zero. Consequently finer integration time steps are needed so that the algorithm can adapt itself to
very abrupt changes in the non-linear function.

3. Comparison of functions

Fig. 2 compares the smoothening functions described above with a ¼ 0:0; b ¼ 0:1745 and s ¼
250: In particular, the quintic spline Kg4 type does not convert the non-linear function of Eq. (2)
into a globally continuous single function (across the whole domain) like Kg1; Kg2 and Kg3: Instead, Kg4

requires calculation of proximity values 7e based on s; and smoothens only the localized regime
between 7e: For the spline, we do not scale the x-axis, instead we define the different regions of
the x-axis. The approximation Kg4 provides continuous derivatives (as shown in Fig. 2(b)) and
provides better accuracy in the vicinity of discontinuous non-linearities. This scheme can be
effectively integrated in semi-analytical methods such as the harmonic balance method [8] and the
shooting (numerical integration) method [9] with some modifications. The reason that this
localized smoothening is effective is that the harmonic balance method involves sampling the non-
linear function and its first derivative at evenly spaced a priori known time points without a need
to find the exact transition points unlike numerical integration schemes. In contrast, the shooting
method or numerical integration requires evaluating the function and its first derivative at
unevenly spaced, non-a priori known time points which may in fact also require evaluations at the
exact transition point. Numerical integration does not care about the particular kind of the
smoothening functions; rather it cares about the continuity of the non-linear function itself. For
example, the quintic spline function Kg4 is adapted in commercial software like ADAMS to speed
up the numerical integration [7]. In contrast, the harmonic balance method gains its advantages at
computation time and resources when evaluating non-linear functions [8] since this method avoids
the calculation of the non-linear transitions. Next Kg2 appears to be a biased approximation of
gðdÞ 
 dj j throughout the full range of d (see Fig. 2(a)), even when a higher value of s (such as 104)
is applied. Conversely, Kg1; Kg3 and Kg4 are well-behaved. In fact, their first derivatives, Kg0

1 and Kg03;
seem to resemble the step response of a first order system with a finite time constant (equal to s).
This can be expressed as Kg05þ ¼ 1� e�sx for the positive side, and Kg0

5� ¼ �1þ esx for the negative
side as shown in Fig. 2(b). However, our numerical simulations of the non-linear oscillator (with
frictional hysteresis) confirm that a numerical overflow leading to a convergence problem is
observed with ‘‘hyperbolic-cosine’’ approximation Kg3: This is because when only the sgn function
is involved, simply saying sgnðxÞ ¼ absðxÞ=x is not strictly correct, since absðxÞ=x is not defined at
x ¼ 0: Consequently, one must instead use sgnðxÞ ¼ @ xj j=@x ¼ g0ðxÞ and the numerical singularity
can be avoided. In this way, the derivative of the sgn function can be defined in all smoothening
functions as shown in Fig. 2(c). Therefore, application of Kg3 should be performed with great care.
It should be also noted that there does not exist a unique s value that will work for all of the
smoothening functions.
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Fig. 2. Comparison of selected smoothening functions Kgi and their derivatives given b ¼ 0:1745 and s ¼ 250: (a)
Kgiðd� bÞ; (b) @ Kgiðd� bÞ=@d; (c) @2 Kgiðd� bÞ=@d2: (–) Kg1; (�) Kg2; (J) Kg3; (– –) Kg4; ( � � � � � ) Kg05þ ¼ 1� e�sx and Kg05� ¼
�1þ esx:
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4. Non-linear responses

Now, consider a single-degree-of-freedom non-linear system with pure harmonic excitation at
frequency op (in the units of rad/s) under the influence of a mean force Fm:

.dþ 2z1o1
’dþ o2

1f ðdÞ ¼ Fm þ Fp sinðopt þ jÞ: ð8Þ

Here, o1 is the natural frequency (rad/s) corresponding to the second stage (with unity slope) of
Fig. 1, z1 is the corresponding damping ratio and Fp is the dynamic force amplitude. The steady
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Fig 3. Effect of the smoothening factor s on the response (with nmax ¼ 12) for case 1 with a ¼ 0:00: (a) Kg1; (b) Kg2; (c) Kg3;
(d) Kg4: (–) s ¼ 100; (J) s ¼ 50; ( � � � � � ) s ¼ 10:

T.C. Kim et al. / Journal of Sound and Vibration 263 (2003) 665–678670



state response is assumed to be periodic with fundamental frequency op:

dðtÞ ¼ dm þ
Xnmax

n¼1

dpn sinðnopt þ jnÞ; ð9Þ

where n is the harmonic index, nmax is the highest harmonic to be included, dm is the mean
displacement, dpn is the harmonic amplitude and jn is the harmonic phase. We will consider 12
harmonics ðnmax ¼ 12Þ for all examples of this paper. A multi-term harmonic balance method is
used to implement Eqs. (8) and (9) and construct the non-linear frequency response
characteristics; this will be fully described in a future article [8]. Our semi-analytical approach
matches well with numerical simulation and experiments.
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First, consider a case (designated as 1) that produces single-sided impacts given o1 ¼ 1; z1 ¼
0:025; Fm ¼ 0:05; Fp ¼ 0:008; and b ¼ 0:1745: For this case with a ¼ 0:0; Fig. 3 shows typical non-
linear frequency response characteristics in terms of dr:m:s: versus %O ¼ op=o1; where dr:m:s: is the
root-mean-square value of response. A noticeable drop in response is observed when sp50: In
particular, when s ¼ 10; the transition point between multi-stiffness regimes can no longer be
recognized, and the softening type single-sided impact response is not observed. The reliability of
this analysis drops severely with the Kg2; Kg3; or Kg4 function, especially for the primary resonance
and super-harmonic regimes. Conversely, Kg1 is accurate over all frequency spans without any sign
of a super-harmonic dimple as found in other approximations. When sX50; the stiffness
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transition regime is recognizable though it yields a very smooth curve. Nonetheless, even lower s
values can predict peak dr:m:s: values within a 5% error band. For the single-sided impact case,
sX50 predicts reasonably accurate stiffness transition points and the overall dynamic response is
reliably constructed.
The same tendency is observed for the double-sided impact (case 2) with o1 ¼ 1; z1 ¼ 0:025;

Fm ¼ 0:05; Fp ¼ 0:03; and b ¼ 0:1745: Fig. 4 shows the effect of s with a ¼ 0:00:When s ¼ 10; the
stiffness transition regimes appear too well rounded. This is especially true when a transition from
single-sided to double-sided impact regimes takes place. Significant differences between s ¼ 10
and 100 cases are observed in both %O and dr:m:s: values as seen in Figs. 3–6. Some spurious super-
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harmonic peaks appear in Fig. 4 at %O ¼ 0:48 with s ¼ 10 for all smoothening approximations.
But for sX50; no super-harmonic peaks are observed and the associated errors are within 2% for
Kg1; though other functions still show spurious super-harmonic peaks. The spurious peak with
s ¼ 10 is due to an incorrect representation of the clearance non-linearity as explained by Fig. 7.
Clear differences between Kg1 and the other functions under the dynamic conditions are observed
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in Figs. 3–6. Nevertheless, all smoothening approximations yield the same results when s exceeds
50. The lower the s value, the rounder the stiffness transition regime and a sufficiently small s
value can even produce the continuous non-linearity with k1x7k2x

27k3x
3 type terms. Fig. 8
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compares the relative amplitudes of higher harmonics. Note that higher values of s require a
virtually infinite number of harmonics to truly construct the discontinuous non-linearity, based on
the application of Gibb’s phenomenon. Conversely, any Kgi approximation with a lower s can be
easily represented by the first few harmonics. As seen in Fig. 8, the lower s value yields larger
second harmonic components. However, the peak dr:m:s: values at the primary resonance remain
the same even with lower s values as seen in Figs. 3–6.
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Significant differences are observed between s ¼ 10 and 50 for case 2 with a ¼ 0:18: This
condition demonstrates strong super-harmonic responses in all approximations. The choice of
s ¼ 10 does not properly predict the super-harmonic responses, and it generates higher dr:m:s:

values in Kg2; Kg3; and Kg4: Conversely, Kg1 provides lower dr:m:s: values in the super-harmonic regime
when s ¼ 10: It seems that the employment of Kg1 must be undertaken with some care especially
when active super-harmonic responses are present.
The effect of s value diminishes when the frictional hysteresis is described in the non-linear

function. This is shown in Fig. 6, which examines the dual-staged frictional hysteresis for case 2
with a ¼ 0:00; H1 ¼ 0:005; and H2 ¼ 0:02: Fig 9 illustrates how this non-linearity is approximated
by the smoothening functions. Note that spurious super-harmonic peaks appear when s is very
low; however, such spurious super-harmonic peaks disappear for sX50: This represents a
significant improvement over the results shown in Fig. 4. However, the tendencies of response
curves with lower s values are the same, though with reduced amplitudes. Therefore, a sufficiently
large s is recommended for non-linear analyses.

5. Conclusion

Overall, the s value affects those frequency response regimes that are influenced by the stiffness
transitions. However, the peak values of dr:m:s: at resonances appear to be insensitive to the choice
of s: Therefore, sX100 can be used with an error bound of 5% when compared with an extremely
high s value (say 106 ). The lower s values should ensure minimal numerical difficulties when
solving the non-linear differential equations using the Newton–Raphson method. This means that
semi-analytical methods should have no difficulty in evaluating the error residual even when a
severe stiffness transition, such as a ¼ 0; is encountered. Furthermore, the small differences
between the Kg1; Kg2; Kg3 and Kg4 approximations may grow, possibly resulting in a critical numerical
overflow problem when the derivatives are required. For example, Kg01 contains a s5 term in
Eq. (4c) in contrast with a 1=s term for Kg02 in Eq. (5c). Finally, the non-linear stiffness functions
like Kg3; when coupled with friction or impact damping, cannot be applied because of a singularity
involved in the sgn function. Further, the localized smoothening function Kg4 provides advantages
only in semi-analytical methods. The most suitable functions (such as Kg1 and Kg2) can be employed
in both direct time domain numerical integration and semi-analytical methods though these must
be handled with some care.
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